Ajude A Mover A Média Matlab
Criado em quarta-feira, 08 de outubro de 2008 20:04 Atualizado em quinta-feira, 14 de março de 2013 01:29 Escrito por Batuhan Osmanoglu Acessos: 41024 Média em movimento em Matlab Muitas vezes eu me encontro na necessidade de promediar os dados que tenho para reduzir o ruído um pouco pouco. Eu escrevi algumas funções para fazer exatamente o que eu quero, mas os matlabs criados na função de filtro funcionam muito bem também. Aqui vou escrever sobre a média de dados 1D e 2D. O filtro 1D pode ser realizado usando a função de filtro. A função de filtro requer pelo menos três parâmetros de entrada: o coeficiente de numerador para o filtro (b), o coeficiente de denominador para o filtro (a) e os dados (X), é claro. Um filtro de média em execução pode ser definido simplesmente por: Para dados 2D, podemos usar a função Matlabs filter2. Para obter mais informações sobre como funciona o filtro, você pode digitar: Aqui está uma implementação rápida e suja de um filtro médio 16 por 16 em movimento. Primeiro precisamos definir o filtro. Como tudo o que queremos é contribuição igual de todos os vizinhos, podemos usar apenas a função. Nós dividimos tudo com 256 (1616), uma vez que não queremos alterar o nível geral (amplitude) do sinal. Para aplicar o filtro, podemos simplesmente dizer o seguinte. Abaixo estão os resultados para a fase de um interferograma SAR. Neste caso, Range está no eixo Y e o Azimuth é mapeado no eixo X. O filtro tinha 4 pixels de largura em alcance e 16 pixels de largura em Azimuth. Preciso calcular uma média móvel em uma série de dados, dentro de um loop for. Eu tenho que obter a média móvel em N9 dias. A matriz Im computação é uma série de 365 valores (M), que em si é valores médios de outro conjunto de dados. Eu quero traçar os valores médios dos meus dados com a média móvel em um gráfico. Eu gritei um pouco sobre as médias móveis e o comando conv e encontrei algo que eu tentei implementar no meu código .: então, basicamente, eu calculo o meu significado e traço-o com uma média móvel (errada). Eu escolhi o valor de Wts diretamente do site Mathworks, então isso é incorreto. (Fonte: mathworks. nlhelpeconmoving-average-trend-estimate. html) Meu problema, porém, é que eu não entendo o que é isso. Alguém poderia explicar Se isso tem algo a ver com os pesos dos valores: isso é inválido neste caso. Todos os valores são ponderados da mesma forma. E se eu estiver fazendo isso inteiramente errado, eu poderia obter alguma ajuda com ele Meus mais sinceros agradecimentos. Perguntou 23 de setembro 14 às 19:05 Usando conv é uma excelente maneira de implementar uma média móvel. No código que você está usando, é o quanto você está pesando cada valor (como você adivinhou). A soma desse vetor deve ser sempre igual a uma. Se você deseja pesar cada valor de forma uniforme e fazer um filtro móvel N de tamanho, então você gostaria de fazer. Usando o argumento válido em conv resultaria em ter menos valores na Ms do que em M. Use o mesmo se você não se importar com os efeitos de Zero preenchimento. Se você tiver a caixa de ferramentas de processamento de sinal, você pode usar o cconv se quiser testar uma média móvel circular. Algo como Você deve ler a documentação conv e cconv para obter mais informações se você não tiver. Você pode usar o filtro para encontrar uma média em execução sem usar um loop for. Este exemplo encontra a média de execução de um vetor de 16 elementos, usando um tamanho de janela de 5. 2) liso como parte da Curva Fitting Toolbox (que está disponível na maioria dos casos) yy liso (y) suaviza os dados no vetor da coluna Usando um filtro de média móvel. Os resultados são retornados no vetor da coluna yy. O intervalo padrão para a média móvel é saída de 5.Documentação tsmovavg (tsobj, s, lag) retorna a média móvel simples para o objeto da série temporária financeira, tsobj. Lag indica o número de pontos de dados anteriores usados com o ponto de dados atual ao calcular a média móvel. Saída tsmovavg (vetor, s, lag, dim) retorna a média móvel simples para um vetor. Lag indica o número de pontos de dados anteriores usados com o ponto de dados atual ao calcular a média móvel. Saída tsmovavg (tsobj, e, timeperiod) retorna a média móvel ponderada exponencial para o objeto da série temporária financeira, tsobj. A média móvel exponencial é uma média móvel ponderada, em que o período de tempo especifica o período de tempo. As médias móveis exponenciais reduzem o atraso aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pesa o preço mais recente em 18.18. Porcentagem Exponencial 2 (TIMEPER 1) ou 2 (WINDOWSIZE 1). Output tsmovavg (vector, e, timeperiod, dim) retorna a média móvel ponderada exponencial para um vetor. A média móvel exponencial é uma média móvel ponderada, em que o período de tempo especifica o período de tempo. As médias móveis exponenciais reduzem o atraso aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pesa o preço mais recente em 18.18. (2 (período de tempo 1)). Saída tsmovavg (tsobj, t, numperiod) retorna a média móvel triangular para o objeto da série temporária financeira, tsobj. A média móvel triangular suaviza os dados. Tsmovavg calcula a primeira média móvel simples com a largura da janela do ceil (numperiod 1) 2. Em seguida, calcula uma segunda média móvel simples na primeira média móvel com o mesmo tamanho de janela. Saída tsmovavg (vetor, t, numperiod, dim) retorna a média móvel triangular para um vetor. A média móvel triangular suaviza os dados. Tsmovavg calcula a primeira média móvel simples com a largura da janela do ceil (numperiod 1) 2. Em seguida, calcula uma segunda média móvel simples na primeira média móvel com o mesmo tamanho de janela. Saída tsmovavg (tsobj, w, pesos) retorna a média móvel ponderada para o objeto da série temporária financeira, tsobj. Fornecendo pesos para cada elemento na janela em movimento. O comprimento do vetor de peso determina o tamanho da janela. Se fatores de peso maiores forem usados para preços mais recentes e fatores menores para preços anteriores, a tendência é mais sensível às mudanças recentes. Saída tsmovavg (vetor, w, pesos, dim) retorna a média móvel ponderada para o vetor fornecendo pesos para cada elemento na janela em movimento. O comprimento do vetor de peso determina o tamanho da janela. Se fatores de peso maiores forem usados para preços mais recentes e fatores menores para preços anteriores, a tendência é mais sensível às mudanças recentes. Saída tsmovavg (tsobj, m, numperiod) retorna a média móvel modificada para o objeto da série temporária financeira, tsobj. A média móvel modificada é semelhante à média móvel simples. Considere o argumento numperiod para ser o atraso da média móvel simples. A primeira média móvel modificada é calculada como uma média móvel simples. Os valores subsequentes são calculados adicionando o novo preço e subtraindo a última média da soma resultante. Saída tsmovavg (vetor, m, numperiod, dim) retorna a média móvel modificada para o vetor. A média móvel modificada é semelhante à média móvel simples. Considere o argumento numperiod para ser o atraso da média móvel simples. A primeira média móvel modificada é calculada como uma média móvel simples. Os valores subsequentes são calculados adicionando o novo preço e subtraindo a última média da soma resultante. Dim 8212 para operar ao longo de inteiro positivo com o valor 1 ou 2 Dimensão para operar junto, especificado como um inteiro positivo com um valor de 1 ou 2. dim é um argumento de entrada opcional e, se não for incluído como entrada, o padrão O valor 2 é assumido. O padrão de dim 2 indica uma matriz orientada por linha, onde cada linha é uma variável e cada coluna é uma observação. Se dim 1. a entrada é assumida como um vetor de coluna ou matriz orientada por coluna, onde cada coluna é uma variável e cada linha uma observação. E 8212 Indicador para vetor de caracteres de média móvel exponencial A média móvel exponencial é uma média móvel ponderada, onde o período de tempo é o período de tempo da média móvel exponencial. As médias móveis exponenciais reduzem o atraso aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pesa o preço mais recente em 18.18. Porcentagem exponencial 2 (TIMEPER 1) ou 2 (WINDOWSIZE 1) período de tempo 8212 Comprimento do período de tempo inteiro não negativo Selecione seu país
Comments
Post a Comment